代表性论文: 1. Fatigue fracture characterization of magnesium alloy and its welding joints based on the temperature evolution(专著) 2. Zhan-cheng Wei, Zhi-feng Yan, Jin-wen Zhang, Hong-xia Zhang,Zhi-xiang Wang, Wen-xian Wang.Research on failure behavior of 18CrNiMo7-6 steel. Engineering Failure Analysis. 150 (2023) 107306. 3. Xiuli He, Zhifeng Yan, Hongyu Liang, Denghui Wang. Corrosion fatigue acoustic emission characteristics and evaluation of friction stir welding joints of AZ31 magnesium alloy in 3.5 wt.% NaCl solution. Journal of Materials Research and Technology. 2023; 25:4582-4594. 4. Qinglu Zhao, Zhifeng Yan, Shubang Wang, Jinwen Zhang, Hongxia Zhang, Xiuli He,Zhixiang Wang, Hongwei Zhang, Wenxian Wang. Study on fatigue temperature evolution and failure behavior of Q460 steel. Journal of Materials Research and Technology 27 (2023) 4378–4389. 5. Ming-zhu Han, Hong-xia Zhang, Zhi-feng Yan, Ke-wei Li , Wen-xian Wang. Improving fatigue properties of 18CrNiMo7-6 steel bysurface strengthening. Materials Letters 328 (2022) 133200. 6. 闫志峰, 王卓然, 王树邦, 张红霞, 贺秀丽, 董鹏. AZ31 镁合金双面对称搅拌摩擦焊接头疲劳性能. 焊接学报. 2022, 43(6): 61-68. 7. Shu-bang Wang, Zhi-feng Yan, Hong-xia Zhang, Xiu-li He, Peng Dong, Wen-xian Wang, Zhuo-ran Wang. Acoustic and thermal energy evolution of AZ31Bmagnesium alloy under static tensile deformation. Journal of material sresearch and technology. 2022; 20: 1645-1658. 8. Jilong Geng, Zhifeng Yan*, Hongxia Zhang, Yongquan Liu, Peng Dong, Shuo Yuan and Wenxian Wang. Microstructure and Mechanical Properties of AZ31B Magnesium Alloy via Ultrasonic Surface Rolling Process. Advanced Engineering Materials. 2021,2100076,1-7. 9.Yan Z , Wang D , He X , et al. Deformation Behaviors and Cyclic Strength Assessment of AZ31B Magnesium Alloy Based on Steady Ratcheting Effect[J]. Materials Science and Engineering: A, 2018:S0921509318303599.(IF=4.0) 10.Zhifeng Y , Denghui W , Wenxian W , et al. Ratcheting Strain and Microstructure Evolution of AZ31B Magnesium Alloy under a Tensile-Tensile Cyclic Loading[J]. Materials, 2018, 11(4):513-.(IF=2.9, 3区) 11.Yan Z F , Zhang H X , Wang W X , et al. Temperature evolution mechanism of AZ31B magnesium alloy during high-cycle fatigue process[J]. Theoretical and Applied Fracture Mechanics, 2014, 70:30-38.(IF=2.8, 3区) 12. Yan Z , Zhang H , Duan J , et al. Effect of post-weld heat treatment on mechanical characteristics of AZ31 magnesium alloy welded joints[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2017, 32(5):1205-1212.(IF=0.6, 4区) 13. Yan Z , Zhang H , Chen P , et al. Anisotropy of fatigue behavior and tensile behavior of 5A06 aluminum alloy based on infrared thermography[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2017, 32(1):155-161.(IF=0.6, 4区) 14. Yan Z F , Zhang H X , Wang W X , et al. Temperature evolution and fatigue life evaluation of AZ31B magnesium alloy based on infrared thermography[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7):1942-1948.(IF=2.3, 2区) 15. Yan, Zhifeng, He, et al. Fatigue Assessment of Welded Joints in AZ31B Magnesium Alloy by a Critical Plane Method[J]. Rare Metal Materials and Engineering, 2014.(IF=0.38, 4区) 16. W, X, Wang, et al. Temperature evolution in magnesium alloy during static and cyclic loading[J]. Materials Science and Technology: MST: A publication of the Institute of Metals, 2014. 2014.(IF=1.9, 4区) 17. Guo, Shaofei, Zhou, Yaguo, Zhang, Hongxia, Yan, Zhifeng, Wang, Wenxian, Sun, Kun, Li, Yuanda.Thermographic analysis of the fatigue heating process for AZ31B magnesium alloy[J].Materials & Design,2015,65:1172-1180. (IF=5.7, 2区) 18. Xiao-Qing L , Hong-Xia Z , Zhi-Feng Y , et al. Fatigue life prediction of AZ31B magnesium alloy and its welding joint through infrared thermography[J]. Theoretical and Applied Fracture Mechanics, 2013, 67-68(5):46-52.(IF=2.8, 3区) 19. Zhang H X , Wei C Y , Yan Z F , et al. Research on fatigue crack propagation behaviour of 4003 ferritic stainless steel based on infrared thermography[J]. Fatigue & Fracture of Engineering Materials & Structures, 2016, 39(2):206-216.(IF=2.5, 3区) |
部分授权专利(第一发明人): 1. 闫志峰;王树邦;张锦文;张红霞;王之香;王文先. 一种预拉伸与表面机械滚压复合提升材料疲劳性能的方法. ZL2023102184155 2. 闫志峰, 董鹏, 王文先, et al. 超纯铁素体不锈钢均质热影响区材料制备方法. ZL 201610139180.0 3. 闫志峰, 董鹏, 王文先, et al. 耐热高强镁合金材料的制备方法,ZL201610139196.1 4. 闫志峰, 董鹏,张红霞, et al. 一种基于镁合金电子束焊接试样疲劳裂纹扩展的分析方法, ZL201710065938.5 软件著作权: 1. 金属材料棘轮演变疲劳极限评定系统, 老版新葡萄8883国际官网,2021SR1785439 2. 金属材料裂纹扩展速率“视、听”协同分析软件, 老版新葡萄8883国际官网,2021SR1785671 3. 金属材料疲劳断裂评定软件, 老版新葡萄8883国际官网,2021SR2001058 4. 金属材料疲劳极限的声发射评定软件, 老版新葡萄8883国际官网,2021SR2001084 5. 金属材料疲劳极限的温度演变评定软件, 老版新葡萄8883国际官网,2021SR2000768 团体标准: TSXMES 14—2022金属材料 疲劳极限测试 表面温度评定法 |